Please enable JavaScript to use CodeHS

Standards Mapping

for Utah Computer Programming 2

61

Standards in this Framework

39

Standards Mapped

63%

Mapped to Course

Standard Lessons
UT.CP2.1.1a
Declare and initialize static arrays/lists of all applicable types
  1. 8.1 Tuples
UT.CP2.1.1b
Perform data input to and output from static arrays/lists
  1. 8.1 Tuples
  2. 9.1 2d Lists
  3. 9.2 List Comprehensions
UT.CP2.1.1c
Perform operations on static arrays/lists including sort arrays
  1. 8.1 Tuples
  2. 9.2 List Comprehensions
UT.CP2.1.1d
Iterate through the static structure (i.e., for-each, enhanced for, or iterators)
  1. 8.3 For Loops and Lists
UT.CP2.1.2a
Declare and initialize a dynamic array/list
  1. 8.2 Lists
UT.CP2.1.2b
Add and remove items from the dynamic array/list
  1. 8.3 For Loops and Lists
  2. 8.4 List Methods
  3. 9.2 List Comprehensions
UT.CP2.1.2c
Output data from dynamic arrays/lists
  1. 8.3 For Loops and Lists
  2. 8.4 List Methods
UT.CP2.1.2d
Perform operations on dynamic arrays/lists
  1. 8.3 For Loops and Lists
  2. 8.4 List Methods
  3. 9.2 List Comprehensions
UT.CP2.1.2e
Iterate through the dynamic structure (i.e. for-each, enhanced for, or iterators)
  1. 8.3 For Loops and Lists
UT.CP2.1.2f
Use a loop to iterate through the dynamic structure
  1. 8.3 For Loops and Lists
UT.CP2.1.3a
Compare string values
  1. 7.6 String Methods
UT.CP2.1.3b
Find the length of a string
  1. 7.4 Strings and For Loops
UT.CP2.1.3c
Copy part or all of string values into other strings
  1. 7.1 Indexing
  2. 7.2 Slicing
  3. 7.4 Strings and For Loops
  4. 7.5 The in Keyword
  5. 7.6 String Methods
UT.CP2.1.3d
Concatenate string values
  1. 3.1 Printing in Python
  2. 3.5 String Operators
  3. 7.1 Indexing
  4. 7.2 Slicing
UT.CP2.1.3e
Locate substring positions
  1. 7.1 Indexing
  2. 7.2 Slicing
UT.CP2.1.3f
Insert strings into other strings
  1. 7.1 Indexing
  2. 7.2 Slicing
  3. 7.4 Strings and For Loops
  4. 7.5 The in Keyword
  5. 7.6 String Methods
UT.CP2.2.1a
Create and initialize sequential files
UT.CP2.2.1b
Store data to sequential files
UT.CP2.2.1c
Retrieve data from sequential files
UT.CP2.2.1d
Update sequential files
UT.CP2.3.1a
Understand that variables and functions have scope, which influences where they can be declared and accessed
  1. 6.3 Namespaces in Functions
UT.CP2.3.1b
Declare and access local variables in a program
  1. 2.11 Variables
  2. 3.2 Variables and Types
  3. 6.3 Namespaces in Functions
UT.CP2.3.1c
Declare and access global variables in a program
  1. 6.3 Namespaces in Functions
UT.CP2.3.2a
Understand the correlation between arguments (inputs) and parameters (variables)
  1. 6.2 Functions and Parameters
UT.CP2.3.2b
Understand that functions may or may not require arguments
  1. 2.8 Functions
  2. 2.13 Parameters
  3. 6.1 Functions
  4. 6.2 Functions and Parameters
  5. 23.5 Functions in Karel
UT.CP2.3.2c
Understand that functions may or may not return values
  1. 6.1 Functions
  2. 6.4 Functions and Return Values
UT.CP2.3.2d
Define function(s), with parameters, without parameters, with return values, without return values, default parameters
  1. 2.8 Functions
  2. 2.13 Parameters
  3. 6.1 Functions
  4. 6.2 Functions and Parameters
  5. 6.4 Functions and Return Values
UT.CP2.3.3a
Identify repetitive or redundant code in an application
  1. 2.4 For Loops
  2. 6.1 Functions
  3. 6.2 Functions and Parameters
  4. 6.4 Functions and Return Values
UT.CP2.3.3b
Understand the role abstraction plays in computer programming
  1. 6.1 Functions
  2. 6.2 Functions and Parameters
  3. 6.4 Functions and Return Values
  4. 15.3 Abstraction
UT.CP2.3.3c
Demonstrate how to abstract multiple steps into a function
  1. 6.1 Functions
  2. 6.2 Functions and Parameters
  3. 6.4 Functions and Return Values
  4. 23.8 Abstraction
UT.CP2.3.3d
Identify the characteristics of a well-defined function. Examples: shorter code, efficiency, reduced memory consumption, high reliability, readability, abstraction
  1. 6.1 Functions
  2. 6.2 Functions and Parameters
  3. 6.4 Functions and Return Values
  4. 23.6 Top Down Design and Decomposition in Karel
UT.CP2.4.1a
Instantiate objects
  1. 12.1 Classes and Objects
UT.CP2.4.1b
Use object data members (i.e., Java’s arr. length)
  1. 7.6 String Methods
UT.CP2.4.1c
Use object member functions (methods)
  1. 12.2 Methods
  2. 12.3 Built-In Methods
UT.CP2.4.2a
Create and use data members (instance variables)
  1. 12.5 Class Variables vs. Instance Variables
UT.CP2.4.2b
Create a constructor to initialize the data members
  1. 12.1 Classes and Objects
  2. 12.5 Class Variables vs. Instance Variables
UT.CP2.4.2c
Create and use member functions (methods)
  1. 12.2 Methods
  2. 12.3 Built-In Methods
UT.CP2.5.1a
Tracing - Cognitively following the passes of a loop, nested function calls, change in value of global and local scoped variables, etc.
  1. 2.4 For Loops
  2. 2.8 Functions
  3. 5.4 Nested Control Structures
  4. 6.3 Namespaces in Functions
UT.CP2.5.1b
Debugging - Utilizing 3rd party tools (IDE’s) to step through a program and troubleshoot
  1. 6.3 Namespaces in Functions
  2. 8.1 Tuples
  3. 23.15 Debugging Strategies
UT.CP2.5.1c
Testing - Validating the outputs of a program and testing its robustness. (i.e., boundary conditions, invalid inputs, unexpected scenarios, incorrect results, etc.)
  1. 6.5 Exceptions
UT.CP2.6.1a
Formalize specifications
UT.CP2.6.1b
Choose proper input parameters
  1. 2.13 Parameters
  2. 6.2 Functions and Parameters
UT.CP2.6.1c
Choose appropriate data structures and processing
  1. 12.1 Classes and Objects
UT.CP2.6.1d
Design appropriate output
UT.CP2.6.1e
Use appropriate test data
UT.CP2.6.1f
Write good documentation
  1. 2.6 Comments
  2. 3.6 Comments
  3. 23.7 Commenting Your Code
UT.CP2.6.2a
Divide a project among programmers
UT.CP2.6.2b
Present work to a group
UT.CP2.6.2c
Coordinate work with others in the group
UT.CP2.6.2d
Complete assigned work according to predetermined deadlines
UT.CP2.6.2e
Participate in a peer performance evaluation
UT.CP2.6.2f
Demonstrate professionalism in team relationships, communication, timeliness, and attitude
UT.CP2.7.1a
Explain the ethical reasons for creating reliable and robust software
UT.CP2.7.1b
Explain the impact software can have on society (i.e., privacy, piracy, copyright laws, ease of use, ete.)
UT.CP2.7.1c
Show how security concerns can be addressed in an application (i.e., biometrics, passwords, information hiding, etc.)
UT.CP2.7.1d
Describe how computer-controlled automation affects a workplace and society
UT.CP2.7.1e
Give examples of ways to protect information on computer systems (attacks, viruses, malware, etc.)
UT.CP2.8.1a
Identify the members of a computer programming/software engineering team: team leader, analyst, senior developer, junior developer, and client/subject matter expert
UT.CP2.8.1b
Describe work performed by each member of the computer programming/software engineering team
UT.CP2.8.1c
Investigate trends and traits associated with computer programming/software engineering careers (creativity, technical, leadership, collaborative, problem solving, design, etc.)
UT.CP2.8.1d
Discuss related career (computer programming/software engineering) pathways