In this lesson, students are introduced to Karel the Dog and how Karel can be given a set of instructions to perform a simple task.
Students will be able to:
move()
, putBall()
, takeBall()
and turnLeft()
.In this lesson, students build on their understanding of how Karel the Dog can be given a set of instructions to perform a simple task.
Students will be able to:
In this lesson, students are introduced to functions through the lens of teaching Karel a new trick - how to turn right! Students will learn how to define and call a function that teaches Karel how to turnRight.
Students will be able to:
In this lesson, functions will be used to teach Karel a new word or command. Using functions allows programs to be broken down into smaller pieces and makes it easier to understand.
Students will be able to:
In this lesson, students will learn the importance of writing readable code and how using the start function can help achieve this.
Students will be able to:
In this lesson, students learn top down design and decomposition as the processes of breaking big problems into smaller, manageable pieces. The functions improve the readability of the code and avoid repeated code.
Students will be able to:
In this lesson, students will learn how to utilize comments in their code to explain what their code is doing. Comments should include preconditions and postconditions. Preconditions are assumptions we make about what is true before a function is called in our program. Postconditions are what should be true after a function is called in our program.
Students will be able to:
In this lesson, students will be introduced to SuperKarel. SuperKarel includes commands like turnRight()
and turnAround()
since they are so commonly used. These commands come prepackaged with the SuperKarel library (API).
Students will be able to:
In this lesson, students learn how to use for loops in their programs. The for loop allows you to repeat a specific part of code a fixed number of times.
A for loops is written as follows:
for(var i = 0; i < 4; i++)
{
// Code to be repeated 4 times
}
Students will be able to:
Students will be able to…
* Use conditions to gather information about Karel’s world (is the front clear, is Karel facing north, etc)
* Create if statements to only execute code if a certain condition is true
If and if/else statements allow Karel to handle different types of worlds and allow us to solve more general problems.
Students will be able to:
While loops allow us to repeat a section of code as long some condition is true.
Students will be able to:
In this lesson, students take a look at all of the control structures. Control structures can be selective, like if and if / else statements and are based on a condition. Other control structures are iterative and allow for repeated code like for loops and while loops. Basically, control structures control the way the commands execute.
Students will be able to:
In this lesson, students will test their knowledge of control structures in preparation for the upcoming Karel challenges. Control structures (like loops and if statements) are useful in building programs that can be applied in various Karel worlds.
Students will be able to:
In this lesson, students will learn the proper way to indent their code. Indentation is especially important when using multiple loops, functions, and if statements to show the structure of the code. Indentation provides a good visual approach to see which commands are inside vs. outside of a loop or if statement.
Students will be able to:
In this lesson, students will synthesize all of the skills and concepts learned in the Karel unit to solve increasingly challenging Karel puzzles.
Students will be able to:
When was the first computer made? What did it look like, and what was it used for? In this lesson, students will explore the creation and evolution of computing machines that now permeate our day-to-day life.
Students will be able to:
How are computers organized? What are the main components of a computer?
In this lesson, we will explore how different organizational structures of computers interact with each other to make computers functional.
Students will be able to:
What kinds of software do computers use and need?
In this lesson, the topic of software is broken down into types of software, how they interact, and the specific functions of the different types of software.
Students will be able to:
What is hardware? How does hardware work?
In this lesson, hardware is broken down into the different physical components of computers and how they contribute to the function of the computer as a whole.
Students will be able to:
Where is computing headed? What is Artificial Intelligence and what are the potential impacts that this might have on our world?
In this lesson, students learn about Artificial Intelligence and how the landscape of computing might change in the future. Students will discuss how these future developments might impact our society.
Students will be able to:
For the final project, students will create a short presentation about a specific model of computer. It could be an early computer model, or a computer model that is still being developed. They may pick any technology where a computer is the main component – this includes phones, robots, drones, etc.
Students will be able to create and present on a specific model of computer using any technology where a computer is the main component (phone, robots, drone, etc).