Course Overview and Goals
The CodeHS introduction to computer science curriculum teaches the foundations of computer science and basic programming, with an emphasis on helping students develop logical thinking and problem solving skills. Once students complete the CodeHS Introduction to Computer Science course, they will have learned material equivalent to a semester college introductory course in Computer Science and be able to program in JavaScript.

Learning Environment: The course utilizes a blended classroom approach. The content is fully web-based, with students writing and running code in the browser. Teachers utilize tools and resources provided by CodeHS to leverage time in the classroom and give focused 1-on-1 attention to students. Each unit of the course is broken down into lessons. Lessons consist of video tutorials, short quizzes, example programs to explore, and written programming exercises, adding up to over 100 hours of hands-on programming practice in total. Each unit ends with a comprehensive unit test that assesses student’s mastery of the material from that unit.

Programming Environment: Students write and run JavaScript programs in the browser using the CodeHS editor.

More information: Browse the content of this course at https://codehs.com/course/1

Prerequisites
The Intro to Computer Science in JavaScript course is designed for complete beginners with no previous background in computer science. The course is highly visual, dynamic, and interactive, making it engaging for new coders.

Course Breakdown
Unit 1: Introduction to Programming in JavaScript with Karel the Dog (3 weeks/15 hours)
Browse the full content of this unit at https://codehs.com/library/course/1/module/1

<table>
<thead>
<tr>
<th>Objectives / Topics Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Commands</td>
</tr>
<tr>
<td>• Defining vs. Calling Methods</td>
</tr>
<tr>
<td>• Designing methods</td>
</tr>
<tr>
<td>• Program entry points</td>
</tr>
<tr>
<td>• Control flow</td>
</tr>
<tr>
<td>• Looping</td>
</tr>
<tr>
<td>• Conditionals</td>
</tr>
<tr>
<td>• Classes</td>
</tr>
<tr>
<td>• Commenting code</td>
</tr>
<tr>
<td>• Preconditions and Postconditions</td>
</tr>
<tr>
<td>• Top Down Design</td>
</tr>
</tbody>
</table>
26 Karel programming exercises in total

- Program-specific tasks for Karel the Dog
 - Example Exercise: Pyramid of Karel
 Write a program to have Karel build a pyramid. There should be three balls on the first row, two in the second row, and one in the third row.
 - Example Exercise: Pancakes
 Karel is the waiter. He needs to deliver a stack of pancakes to the guests on the 2nd, 4th, and 6th avenue. Each stack of pancakes should have three pancakes.
 Create a method called makePancakes() to help Karel solve this problem.
 - Example Exercise: The Two Towers
 In this program, Karel should build two towers of tennis balls. Each tower should be 3 tennis balls high.
 At the end, Karel should end up on top of the second tower, facing East.
- Teach Karel new commands like `turnRight()` or `makePancakes()`
 - Example Exercise: Pancakes
 Karel is the waiter. He needs to deliver a stack of pancakes to the guests on the 2nd, 4th, and 6th avenue. Each stack of pancakes should have three pancakes.
 Create a method called makePancakes() to help Karel solve this problem.
- Solve large Karel problems by breaking them down into smaller, more manageable problems using Top Down Design
 - Example Exercise: The Two Towers
 In this program, Karel should build two towers of tennis balls. Each tower should be 3 tennis balls high.
 At the end, Karel should end up on top of the second tower, facing East.
- Using control structures and conditionals to solve general problems
 - Example Exercise: Random Hurdles
 Write a program that has Karel run to the other side of first street, jumping over all of the hurdles. However, the hurdles can be in random locations. The world is fourteen avenues long.

Unit 2: Karel Challenges (1.5 weeks, 7 hours)

Browse the full content of this unit at https://codehs.com/library/course/1/module/1407

Objectives / Topics Covered
- Solving large and more complex problems using Karel

Assignments / Labs
- 5 Karel challenges to tie everything learned in the Karel module together
 - Example Exercise: Super Cleanup Karel
 Karel's world is a complete mess. There are tennis balls all over the place, and you need to clean them up. Karel will start in the bottom left corner of the world facing east, and should clean up all of the tennis balls in the world. This program should be general enough to work on any size world with tennis balls in any locations.

Unit 3: Javascript & Graphics (1 week/5 hours)

Browse the full content of this unit at https://codehs.com/library/course/1/module/2

Objectives / Topics Covered
- Variables
- User Input
- Arithmetic Expressions
- Graphics

Assignments / Labs
- 7 JavaScript & graphics programming exercises in total
 - Using variables and getting user input using JavaScript
 - Example Exercise: Dinner Plans
 Prompt the user for their name, then ask them what time you should
meet for dinner. Greet them by name and tell them you will meet them at the time they specified!

Unit 4: Graphics Challenges (1 week, 5 hours)
Browse the full content of this unit at https://codehs.com/library/course/1/module/9127

| Objectives / Topics Covered | ● Pair Programming
 ● Solving large and more complex problems using graphics |
|-----------------------------|---|
| Assignments / Labs | ● 3 graphics challenges to tie everything learned in the JavaScript & Graphics module together
 ○ Example Exercise: Ghost
 Write a program to draw a ghost on the screen. You must do this by using the constant values given (this will allow us to easily alter the size or color of the ghost.) |

Unit 5: JavaScript Control Structures (3 weeks/15 hours)
Browse the full content of this unit at https://codehs.com/library/course/1/module/1410

| Objectives / Topics Covered | ● Booleans
 ● For Loops
 ● Conditionals
 ● Nested Control Structures
 ● While Loops |
|-----------------------------|---|
| Assignments / Labs | ● 22 control structures programming exercises in total
 ● Using comparison and logical operators to control the flow of the program
 ○ Example Exercise: Inventory
 Write a program that keeps track of a simple inventory for a store. While there are still items left in the inventory, ask the user how many items they would like to buy. Then print out how many are left in inventory after the purchase. You should use a while loop for this problem.
 Make sure you catch the case where the user tries to buy more items than there are in the inventory. In that case, you should print a message to the user saying that their request isn't possible.
 ● Using for loops
 ○ Example Exercise: All Dice Values
 ■ Write a program that prints all possible dice rolls with 2 dice.
 To do so, you should use a double for loop. Hint: You can’t use i for both for loops.
 ● Drawing basic graphics using JavaScript
 ○ Example Exercise: Caterpillar
 This graphics program should draw a caterpillar. A caterpillar has NUM_CIRCLES circles. Every other circle is a different color, the even circles are red, and the odd circles are green (by even we mean when i is an even number). Use a for loop to draw the caterpillar, centered vertically in the screen. Also, be sure that the caterpillar is still drawn across the whole canvas even if the value of NUM_CIRCLES is changed. |
Unit 6: Control Structures Challenges (1 week, 5 hours)

Browse the full content of this unit at https://codehs.com/library/course/1/module/9128

<table>
<thead>
<tr>
<th>Objectives / Topics Covered</th>
<th>● Solving large and more complex problems using control structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments / Labs</td>
<td>● 4 challenges using control structures to tie everything learned in the JavaScript Control Structures module together</td>
</tr>
<tr>
<td></td>
<td>○ Example Exercise: Guessing Game</td>
</tr>
<tr>
<td></td>
<td>The computer picks a number between 1 and 100, and you have to guess it. The computer will tell you whether your guess was too high, too low, or correct. Your assignment is to generate a random number and let the user guess numbers until they guess the correct number. Make sure to let the user know what they should do at the beginning of the program!</td>
</tr>
</tbody>
</table>

Unit 7: Functions and Parameters (2 weeks/10 hours)

Browse the full content of this unit at https://codehs.com/library/course/1/module/1410

<table>
<thead>
<tr>
<th>Objectives / Topics Covered</th>
<th>● Functions with and without parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>● Functions with and without return values</td>
</tr>
<tr>
<td></td>
<td>● Nested Control Structures</td>
</tr>
<tr>
<td></td>
<td>● Local variables and scope</td>
</tr>
<tr>
<td>Assignments / Labs</td>
<td>● 14 functions programming exercises in total</td>
</tr>
<tr>
<td></td>
<td>● Using various kinds of functions such as functions with and without parameters, and functions with and without return values</td>
</tr>
<tr>
<td></td>
<td>○ Example Exercise: Vertical Lines</td>
</tr>
<tr>
<td></td>
<td>Write a function that draws vertical lines on the graphics canvas. If a line is vertical, then the x-values for the endpoints are the same. The parameters to your function should be the x location, and the length, and all of your lines should start at y position 0.</td>
</tr>
<tr>
<td></td>
<td>○ Example Exercise: Is it even?</td>
</tr>
<tr>
<td></td>
<td>Write a function called isEven that returns a boolean of whether or not a value is even or odd. The isEven function should not print anything out or return a number. It should only take in a number and return a boolean. Once you've written this function, write a program that asks the user for integers and prints whether the number they entered is even or odd using your isEven function. You should let the user keep entering numbers until they enter the SENTINEL given.</td>
</tr>
</tbody>
</table>

Unit 8: Functions Challenges (1 week/5 hours)

Browse the full content of this unit at https://codehs.com/library/course/1/module/9129

<table>
<thead>
<tr>
<th>Objectives / Topics Covered</th>
<th>● Solving large and more complex problems using functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments / Labs</td>
<td>● 4 challenges using functions to tie everything learned in the Functions and Parameters module together</td>
</tr>
<tr>
<td></td>
<td>○ Example Exercise: Balloons</td>
</tr>
<tr>
<td></td>
<td>You should use lines, circles, and random colors to draw a bunch of</td>
</tr>
</tbody>
</table>
All the balloon strings should start two-thirds down the canvas. Each string line should travel upward to a random point and have a circle placed on top of the endpoint. Each balloon should be a random color and have a radius between `MIN_RADIUS` and `MAX_RADIUS`.

Unit 9: Animation and Games (3 weeks/15 hours)

Browse the full content of this unit at https://codehs.com/library/course/1/module/3

| Objectives / Topics Covered | ● Timers
| | ● Randomizing Games
| | ● Mouse Events
| | ● Keyboard Events

| Assignments / Labs | ● 15 animations programming exercises in total
| | ● Using timers to add randomizations to graphical programs
| | ○ Example Exercise: Paint Splatter
| | Write a program that splatters paint on the screen every DELAY milliseconds.
| | To splatter paint, pick a random color and draw CIRCLES_PER_SPLATTER circles of that color at random places on the screen. The radius of each circle should be a random value between MIN_RADIUS and MAX_RADIUS.
| | Remember to use helper functions.
| | ● Using mouse events for interactive programs
| | ○ Example Exercise: Target
| | Draw a target on the screen that moves to aim at where your mouse is located.
| | A target consists of a horizontal line that goes from 0 to the window width and a vertical line that goes from 0 to the window height. The lines should cross paths where the mouse is.
| | If you’re feeling adventurous, you can extend this to draw a small red circle whenever you click.
| | If you’re feeling really adventurous, you can have a bouncing ball on the screen and see if you can remove it when it gets clicked.
| | You can use remove(obj) to remove something from the screen and getElementAt(x, y) to get an object at the given position. It will return the object or will return null if there is no object there.
| | ● Using keyboard events for interactive programs
| | ○ Example Exercise: Basic Snake
| | Write a basic version of the snake game.
| | The way our game works is by first creating a green square at the center of the screen. The snake should be moving to the right. If you hit an arrow key, you should change the snake’s direction.

Unit 10: Animations Challenges (1 week/5 hours)

Browse the full content of this unit at https://codehs.com/library/course/1/module/9130

| Objectives / Topics Covered | ● Solving large and more complex problems using animation
| | ● 2 challenges using animation to tie everything learned in the Animation &
Games module together
 ○ Example Exercise: Blinking Rectangles
 You should divide the canvas into an imaginary grid with
 `NUM_RECTANGLES_ACROSS` rectangles across, and
 `NUM_RECTANGLES_DOWN` rectangles down. Each time the user
 moves the mouse, a rectangle aligned with this grid should be
drawn so that the mouse's location is within the rectangle. The
rectangle should change color each time the mouse passes over it.

Unit 11: Project: Breakout (2 weeks/10 hours)
Browse the full content of this unit at https://codehs.com/library/course/1/module/469

| Objectives / Topics Covered | ● Basic graphics
| | ● Mouse events
| | ● Collision detection |
| Assignments / Labs | ● Guided exercises to build a Breakout Game
| | ● Breakout is made up of bricks at the top of the screen, a paddle that you
 control at the bottom of the screen, and a ball that bounces around. Your
 goal is to direct the paddle with your mouse to bounce the ball until all of
 the bricks have been hit and disappear. |

Unit 12: Final Project (2-4 weeks/10-20 hours)
Browse the full content of this unit at https://codehs.com/library/course/1/module/9131

| Objectives / Topics Covered | ● Collaborative Programming
| | ● Project Planning
| | ● Pseudocode |
| Assignments / Labs | ● Collaborative open-ended final project which encourages creativity
| | ● Program Requirements:
| | ○ must use JavaScript Graphics
| | ○ must allow the user to interact with your project with either their
 mouse or keyboard
| | ○ must use at least one timer
| | ○ must break down the program into multiple functions
| | ○ must utilize control structures where applicable |

Optional Supplemental Materials (Remainder of school year)
These supplemental materials should be used following the Prerequisite Units mentioned:

| Supplementary Units | Prerequisite/Recommended Unit(s)
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-------------------------------------</td>
<td>----------------------------------</td>
</tr>
</tbody>
</table>
| Extra Karel Practice | Programming with Karel and Karel
| Challenges | | 12 |
| Extra Karel Puzzles | Programming with Karel and Karel
<p>| Challenges | | 11 |
| Functions and Parameters Practice | Functions & Parameters | 8 |</p>
<table>
<thead>
<tr>
<th>Extra Console Challenges</th>
<th>Javascript Control Structures</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>More Graphics and Animation</td>
<td>Animation & Games</td>
<td>11</td>
</tr>
<tr>
<td>- Snake Game</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Graphics Challenges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evolution Simulation (note as a possible Science tie-in)</td>
<td>Data Structures</td>
<td>5</td>
</tr>
<tr>
<td>Visualizing Music</td>
<td>Data Structures (array)</td>
<td>9</td>
</tr>
<tr>
<td>Data Structures</td>
<td>Complete all units in main course, including Breakout</td>
<td>78</td>
</tr>
<tr>
<td>- Arrays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Lists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Objects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Sets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Grids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tic Tac Toe</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>Helicopter Game</td>
<td>Data Structures</td>
<td>24</td>
</tr>
<tr>
<td>Data Structures Challenges</td>
<td>Data Structures</td>
<td>6</td>
</tr>
<tr>
<td>- Conway's Game of Life</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Connect Four</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>