
CodeHS
Texas Computer Science I Course Syllabus
1 year for High School (145-155 contact hours)

Course Overview and Goals
The CodeHS Texas Computer Science I curriculum fosters students' creativity and innovation by presenting
opportunities to design, implement, and present meaningful programs through a variety of media. Through
computational thinking and data analysis, students identify task requirements, plan search strategies, and use
computer science concepts to access, analyze, and evaluate information needed to solve problems. Students
learn digital citizenship by researching current laws, regulations, and best practices and by practicing integrity
and respect. Students gain an understanding of the principles of computer science through the study of
technology operations, systems, and concepts.

Learning Environment: The course utilizes a blended classroom approach. The content is fully web-based, with
students writing and running code in the browser. Teachers utilize tools and resources provided by CodeHS to
leverage time in the classroom and give focused 1-on-1 attention to students. Each unit of the course is broken
down into lessons. Lessons consist of video tutorials, short quizzes, example programs to explore, and written
programming exercises, adding up to over 100 hours of hands-on programming practice in total. Each unit ends
with a comprehensive unit test that assesses student’s mastery of the material from that unit as well as challenge
problems where students can display their understanding of the material.

Programming Environment: Students write and run JavaScript programs in the browser using the CodeHS
editor.

More information: Browse the content of this course at https://codehs.com/course/21296

Prerequisites: The Computer Science I course is designed for complete beginners with no previous background
in computer science. The course is highly visual, dynamic, and interactive, making it engaging for new coders.

Course Breakdown
Unit 1: What is Computing? (5 weeks/25 hours)
Students learn about the history of computing, and about the various parts that make up modern computers.
Students also consider the impact computing has had on today's world, and the impacts computing could
potentially have in the future.

Objectives / Topics
Covered

● Digital information
● Number systems
● What is a computer?
● What is software?
● What is hardware?
● Software licenses
● Future of computing

https://codehs.com/course/21296


Example Assignments
/ Labs

● Encoding data
○ Create your own encoding scheme
○ Encode images using binary
○ Example Activity:

■ Write a message by encoding the characters in
binary, using the ASCII codes.

● Using different number systems
○ Convert numbers between decimal, binary, and

hexadecimal
● What is a computer?

○ What parts do modern computers have?
○ What are input devices?
○ What are output devices?
○ Example Activity:

■ Draw a computer and label all of its parts,
including the input devices and output devices

● Software/Hardware
○ What’s the difference?
○ What hardware components make up a computer?
○ What is software used for?
○ Example Activity:

■ Label the parts of your computer
● Future of Computing

○ Research uses of Artificial Intelligence in use now
○ Research new ways of storing data
○ Example Class Activity:

■ In what ways can we use technology that we
couldn’t 10 years ago. Are these technological
advances helpful or harmful overall?

Unit 2: Introduction to Programming in JavaScript with Karel the Dog (3 weeks/15 hours)
Students learn the basics of programming by giving Karel the Dog commands in a grid world.

Objectives / Topics
Covered

● Commands
● Defining vs. calling methods
● Designing methods
● Program entry points
● Control flow
● Looping
● Conditionals
● Commenting code
● Top down design
● Debugging strategies

Example Assignments
/ Labs

● Program-specific tasks for Karel the Dog
○ Example Exercise: Pyramid of Karel

Write a program to have Karel build a pyramid. There should be three
balls on the first row, two in the second row, and one in the third row.

● Teach Karel new commands like turnRight() or makePancakes()
○ Example Exercise: Pancakes

Karel is the waiter. He needs to deliver a stack of pancakes to the



guests on the 2nd, 4th, and 6th avenue. Each stack of pancakes should
have three pancakes.
Create a method called makePancakes() to help Karel solve this
problem.

● Solve large Karel problems by breaking them down into smaller, more
manageable problems using Top Down Design

○ Example Exercise: The Two Towers
In this program, Karel should build two towers of tennis balls. Each
tower should be 3 tennis balls high.
At the end, Karel should end up on top of the second tower, facing East.

● Using control structures and conditionals to solve general problems
○ Example Exercise: Random Hurdles

Write a program that has Karel run to the other side of first street,
jumping over all of the hurdles. However, the hurdles can be in random
locations. The world is fourteen avenues long.

Unit 3: Karel Challenges (1.5 weeks, 7 hours)
Students apply all the foundational concepts from Intro to Karel to solve new challenges.

Objectives / Topics
Covered

● Solving large and more complex problems using Karel

Example Assignments
/ Labs

● Karel challenges to tie everything learned in the Karel module together
○ Example Exercise: Super Cleanup Karel

Karel’s world is a complete mess. There are tennis balls all over the
place, and you need to clean them up. Karel will start in the bottom left
corner of the world facing east, and should clean up all of the tennis
balls in the world. This program should be general enough to work on
any size world with tennis balls in any locations.

Unit 4: Digital Citizenship and Cyber Hygiene (7 weeks, 35 hours)
Students learn about Internet etiquette and how to stay safe on the world wide web. They also look at the
potential effects of their digital footprints, how to protect information from online risks, and the implications of
cyberbullying. Finally, students learn how to find and cite quality resources online.

Objectives / Topics
Covered

● Digital Footprint and Reputation
● Privacy and Security
● Information Literacy
● Creative Credit and Copyright

Example Example
Assignments / Labs

● Digital Footprint and Reputation
○ Example activities:

■ What is your digital footprint?
■ Are you going to make any changes in what you post on

social media?
● Keeping data private and secure

○ Example activities:
■ Test out various passwords on a site
■ Explore Google’s privacy policy: What do they know about

you?
● Information Literacy



○ Example activities:
■ Create and test search queries
■ Explore evidence for using sources

● Different types of copyright licenses
○ Example activities:

■ Create citations for sources
■ Explore image search tools

Unit 5: JavaScript Basics (1 week/5 hours)
Students learn the basics of JavaScript including variables, user input, mathematics, and functions.

Objectives / Topics
Covered

● Variables
● User Input
● Arithmetic Expressions
● Constants
● Collaborative Programming
● Random Numbers
● Functions

Example Assignments
/ Labs

● Using variables and getting user input using JavaScript
○ Example Exercise: Dinner Plans

Prompt the user for their name, then ask them what time you should
meet for dinner.
Greet them by name and tell them you will meet them at the time
they specified!

Unit 6: The Canvas and Graphics (1 week/5 hours)
Students learn how to add graphics objects and position them on the canvas.

Objectives / Topics
Covered

● JavaScript Canvas
● JavaScript Graphics
● Positioning Graphics Objects

Example Assignments
/ Labs

● Example Exercise: Create Your Own Meme
In this exercise, you are going to create your own meme! The only
requirements are that you add at least one image and one text element.

Unit 7: Graphics Challenges (1 week, 5 hours)
Students apply what they have learned about graphics and basic JavaScript to complete a set of challenges.

Objectives / Topics
Covered

● Solving large and more complex problems using graphics

Example Assignments
/ Labs

● Graphics challenges to tie everything learned in the The Canvas and
Graphics module

○ Example Exercise: Ghost
Write a program to draw a ghost on the screen. You must do this by
using the constant values given (this will allow us to easily alter the
size or color of the ghost.)



Unit 8: JavaScript Control Structures (3 weeks/15 hours)
Students learn how to use control structures such as if/else statements and loops to make advanced programs
in JavaScript.

Objectives / Topics
Covered

● Booleans
● If/Else Statements
● Logical Operators
● Comparison Operators
● Conditionals
● While Loops
● Break Statements
● For Loops
● Nested Control Structures

Example Assignments
/ Labs

● Using comparison and logical operators to control the flow of the program
○ Example Exercise: Inventory

Write a program that keeps track of a simple inventory for a store.
While there are still items left in the inventory, ask the user how
many items they would like to buy. Then print out how many are left
in inventory after the purchase. You should use a while loop for this
problem.
Make sure you catch the case where the user tries to buy more items
than there are in the inventory. In that case, you should print a
message to the user saying that their request isn’t possible.

● Using for loops
○ Example Exercise: Jukebox

■ In the days before the internet, many restaurants would have
a jukebox that allowed customers to choose what music they
wanted to play. Customers would enter a coin and choose
from the jukebox's music collection by selecting a song's
number. You could choose one song per coin. In this
exercise, you will create a digital jukebox where the user can
enter any number of quarters to create a playlist of songs.

● Drawing basic graphics using JavaScript
○ Example Exercise: Caterpillar

This graphics program should draw a caterpillar. A caterpillar has
NUM_CIRCLES circles. Every other circle is a different color, the even
circles are red, and the odd circles are green (by even we mean
when i is an even number). Use a for loop to draw the caterpillar,
centered vertically on the screen. Also, be sure that the caterpillar is
still drawn across the whole canvas even if the value of
NUM_CIRCLES is changed.

Unit 9: Control Structures Challenges (1 week, 5 hours)
Students apply the foundational concepts from the Control Structures module to solve new challenges.

Objectives / Topics
Covered

● Solving large and more complex problems using control structures

Example Assignments
/ Labs

● Challenges using control structures to tie everything learned in the
JavaScript Control Structures module together

○ Example Exercise: Guessing Game



The computer picks a number between 1 and 100, and you have to
guess it. The computer will tell you whether your guess was too
high, too low, or correct. Your assignment is to generate a random
number and let the user guess numbers until they guess the correct
number. Make sure to let the user know what they should do at the
beginning of the program!

Unit 10: Functions (2 weeks/10 hours)
Students learn to write reusable code with functions, parameters, and return values, and explore the impact of
variable scopes.

Objectives / Topics
Covered

● Parameters
● Return Values
● Default Parameters
● Scope

Example Assignments
/ Labs

● Using various kinds of functions such as functions with and without
parameters, and functions with and without return values

○ Example Exercise: Is it even?
Write a program that continually asks the user for integers and then
prints whether their input is even or odd. The user should keep
entering numbers until they enter 0; at that point, print "Done!" on its
own line.

In order to check if the inputted integer is even or odd, you should
define and call a function named `isEven()`. This function should
return a Boolean value of `true` or `false` depending if the number is
even or not.

Unit 11: Animation and Games (3 weeks/15 hours)
Students learn how to make objects move around the screen and let users interact using the mouse!

Objectives / Topics
Covered

● Timers
● Randomizing Games
● Mouse Events
● Keyboard Events

Example Assignments /
Labs

● Throughout the lessons in this module, you will be developing a simple game
that incorporates basic animation techniques and input events.

● Using timers to add randomizations to graphical programs
○ Example Exercise: Paint Splatter

Write a program that splatters paint on the screen every DELAY
milliseconds.
To splatter paint, pick a random color and draw
CIRCLES_PER_SPLATTER circles of that color at random places on
the screen. The radius of each circle should be a random value
between MIN_RADIUS and MAX_RADIUS.
Remember to use helper functions.

● Using mouse events for interactive programs
○ Example Exercise: Target

Draw a target on the screen that moves to aim at where your mouse



is located.
A target consists of a horizontal line that goes from 0 to the window
width and a vertical line that goes from 0 to the window height. The
lines should cross paths where the mouse is.

● Using keyboard events for interactive programs
○ Example Exercise: Basic Snake

Write a basic version of the snake game.
The way our game works is by first creating a green square at the
center of the screen. The snake should be moving to the right. If
you hit an arrow key, you should change the snake’s direction.

Unit 12: Project: Breakout (2 weeks/10 hours)
Students learn how to make their own Breakout game from scratch using JavaScript.

Objectives / Topics
Covered

● Basic graphics
● Mouse events
● Collision detection

Example Assignments /
Labs

● Guided exercises to build a Breakout Game
● Breakout is made up of bricks at the top of the screen, a paddle that you

control at the bottom of the screen, and a ball that bounces around. Your
goal is to direct the paddle with your mouse to bounce the ball until all of
the bricks have been hit and disappear.

Unit 13: Basic Data Structures (3 weeks/10-15 hours)
Students learn about arrays, adding/removing from them and iterating through them, their methods, and string
manipulation.

Objectives / Topics
Covered

● Array creation and basic operations
● Iterating through arrays
● Array methods
● String manipulation

Example Assignments /
Labs

● Basic array operations
○ Example Exercise: List of Places to Travel

Create an array of the top 5 places you would like to travel called
travelList. Print out the item at index 2.

● Iterating through arrays
○ Example Exercise: Draw a Barcode

In this program, you will draw a barcode on the screen given an
array that represents the data in the barcode.

● Array methods
○ Example Exercise: Mutual Friends

In this program, you are going to create function that will find the
mutual friends between two array lists of friends.

Unit 14: Final Project (2-4 weeks/10-20 hours)
Students learn about what makes an engaging and accessible user interface, and will employ an iterative design
process including rapid prototyping and user testing to design and develop their own engaging projects.



Objectives / Topics
Covered

● Collaborative Programming
● Project Planning
● Pseudocode
● Prototype
● Testing

Example Assignments /
Labs

● Collaborative open-ended final project which encourages creativity
● Program Requirements:

Your program:
○ must utilize mouse interaction from the user
○ must use at least one timer
○ must break down the program into multiple functions
○ must utilize control structures where applicable

Unit 15: Computer Science Careers (2-4 weeks/10-20 hours)
Students learn about a variety of computer science careers and organizations, and what the next steps could
look like for them if interested.

Objectives / Topics
Covered

● Careers and internships
● CS career preparation
● Legal and ethical responsibilities
● Workplace readiness

Example Assignments /
Labs

● Exploring computer science careers, internships, and organizations
● Learning about CS resumes and certifications
● Researching about a major ethical or legal topic in CS
● Reflecting on what it means to be a leader and the skills required to be

successful in the workplace

Optional Supplemental Materials (Remainder of school year)

Objectives / Topics
Covered

● Midterm
● Final Exam (JS topics)
● Extra practice with Karel and JavaScript topics


