====| CodeHS

Video Game Design Syllabus
1 year for High School (175 contact hours)

Course Overview and Goals

The CodeHS video game design curriculum teaches the foundations of creating video games in JavaScript.
While this course is introductory, it is an honors-level course. Its curriculum teaches the foundations of
computer science and basic programming, with an emphasis on helping students develop logical
thinking and problem solving skills. Once students complete the course, they will have learned material
equivalent to a semester college introductory course in Computer Science and be able to program in
JavaScript

Learning Environment: The course utilizes a blended classroom approach. The content is fully web-based, with
students writing and running code in the browser. Teachers utilize tools and resources provided by CodeHS to
leverage time in the classroom and give focused 1-on-1 attention to students. Each module of the course is
broken down into lessons. Lessons consist of video tutorials, short quizzes, example programs to explore, and
written programming exercises, adding up to over 100 hours of hands-on programming practice in total. Each
module ends with a comprehensive module test that assesses students’ mastery of the material from that
module.

Programming Environment: Students write and run JavaScript programs in the browser using the CodeHS
editor.

More information: Browse the content of this course at https://codehs.com/course/20517

Prerequisites

The Video Game Design course is designed for complete beginners with no previous background in computer
science, but does teach advanced topics. The course is highly visual, dynamic, and interactive, making it
engaging for new coders.

Course Breakdown

Module 1: Introduction to Programming in JavaScript with Karel the Dog (5 weeks/25 hours)
Students learn the basics of programming by giving Karel the Dog commands in a grid world.

Commands

Defining vs. Calling Methods
Designing methods
Program entry points
Control flow

Looping

Conditionals

Commenting code

Objectives / Topics
Covered

https://codehs.com/course/20517

e Preconditions and Postconditions
e Top Down Design
Assignments / Labs e 30 Karel Programming Exercises and Challenges in total
e Program-specific tasks for Karel the Dog
o Example Exercise: Pyramid of Karel
Write a program to have Karel build a pyramid. There should be three
balls on the first row, two in the second row, and one in the third row.
e Teach Karel new commands like turnRight () or makePancakes()
o Example Exercise: Pancakes
Karel is the waiter. He needs to deliver a stack of pancakes to the
guests on the 2nd, 4th, and 6th avenue. Each stack of pancakes
should have three pancakes.
Create a method called makePancakes () to help Karel solve this
problem.
e Solve large Karel problems by breaking them down into smaller, more

manageable problems using Top Down Design
o Example Exercise: The Two Towers
In this program, Karel should build two towers of tennis balls. Each
tower should be 3 tennis balls high.
At the end, Karel should end up on top of the second tower, facing
East.
Using control structures and conditionals to solve general problems
o Example Exercise: Random Hurdles
Write a program that has Karel run to the other side of first street,
jumping over all of the hurdles. However, the hurdles can be in
random locations. The world is fourteen avenues long.
o Example Exercise: Super Cleanup Karel
Karel’s world is a complete mess. There are tennis balls all over the
place, and you need to clean them up. Karel will start in the bottom
left corner of the world facing east, and should clean up all of the
tennis balls in the world. This program should be general enough to
work on any size world with tennis balls in any locations.

Unit 2: JavaScript Basics (1 week/5 hours)
Students learn the basics of JavaScript including variables, user input, mathematics, and functions.

Objectives / Topics
Covered

Variables

User Input

Arithmetic Expressions
Constants

Collaborative Programming
Random Numbers
Functions

Assignments / Labs

12 JavaScript programming exercises in total
Using variables and getting user input using JavaScript
o Example Exercise: Dinner Plans
Prompt the user for their name, then ask them what time you should
meet for dinner.
Greet them by name and tell them you will meet them at the time
they specified!

Unit 3: The Canvas and Graphics (1 week/3-5 hours)
Students learn how to add graphics objects and position them on the canvas.

Objectives / Topics e JavaScript Canvas
Covered e JavaScript Graphics
e Positioning Graphics Objects

Assignments / Labs e 7 JavaScript programming and graphics exercises in total

o Example Exercise: Create Your Own Meme
In this exercise, you are going to create your own meme! The only
requirements are that you add at least one image and one text
element.

Unit 4: Graphics Challenges (1 week/3-5 hours)
Students apply what they have learned about graphics and basic JavaScript to complete a set of challenges.

Objectives / Topics e Solving large and more complex problems using graphics
Covered
Assignments / Labs e 3 graphics challenges to tie everything learned in the JavaScript & Graphics

module together
o Example Exercise: Ghost
Write a program to draw a ghost on the screen. You must do this by
using the constant values given (this will allow us to easily alter the
size or color of the ghost.)

Unit 5: JavaScript Control Structures (3 weeks/10-15 hours)
Students learn how to use control structures such as if/else statements and loops to make advanced programs
in JavaScript.

Booleans

If/Else Statements

Logical Operators
Comparison Operators
Conditionals

While Loops

Break Statements

For Loops

Nested Control Structures

Objectives / Topics
Covered

Assignments / Labs 31 control structures programming exercises in total
e Using comparison and logical operators to control the flow of the program
o Example Exercise: Inventory

Write a program that keeps track of a simple inventory for a store.
While there are still items left in the inventory, ask the user how
many items they would like to buy. Then print out how many are left
in inventory after the purchase. You should use a while loop for this
problem.
Make sure you catch the case where the user tries to buy more items
than there are in the inventory. In that case, you should print a
message to the user saying that their request isn’t possible.

e Using for loops

O

Example Exercise: Jukebox

m Inthe days before the internet, many restaurants would have
a jukebox that allowed customers to choose what music they
wanted to play. Customers would enter a coin and choose
from the jukebox's music collection by selecting a song's
number. You could choose one song per coin. In this
exercise, you will create a digital jukebox where the user can
enter any number of quarters to create a playlist of songs.

Drawing basic graphics using JavaScript

O

Example Exercise: Caterpillar

This graphics program should draw a caterpillar. A caterpillar has
NUM_CIRCLES circles. Every other circle is a different color, the even
circles are red, and the odd circles are green (by even we mean
when i is an even number). Use a for loop to draw the caterpillar,
centered vertically on the screen. Also, be sure that the caterpillar is
still drawn across the whole canvas even if the value of
NUM_CIRCLES is changed.

Unit 6: Control Structures Challenges (1 week/3-5 hours)
Students apply the foundational concepts from the Control Structures module to solve new challenges.

Objectives / Topics e Solving large and more complex problems using control structures
Covered
Assignments / Labs e 3 challenges using control structures to tie everything learned in the

JavaScript Control Structures module together

O

Example Exercise: Guessing Game

The computer picks a number between 1 and 100, and you have to
guess it. The computer will tell you whether your guess was too
high, too low, or correct. Your assignment is to generate a random
number and let the user guess numbers until they guess the correct
number. Make sure to let the user know what they should do at the
beginning of the program!

Unit 7: Functions (2 weeks/5-10 hours)

Students learn to write reusable code with functions, parameters, and return values, and explore the impact of

variable scopes.

Objectives / Topics e Parameters
Covered e Return Values
e Default Parameters
e Scope
Assignments / Labs e 12 functions programming exercises in total

Using various kinds of functions such as functions with and without
parameters, and functions with and without return values

O

Example Exercise: Is it even?

Write a program that continually asks the user for integers and then
prints whether their input is even or odd. The user should keep
entering numbers until they enter O; at that point, print "Done!" on its
own line.

In order to check if the inputted integer is even or odd, you should
define and call a function named “isEven()". This function should
return a Boolean value of ‘true” or ‘false” depending if the number is
even or not.

Unit 8: Functions Challenges (1 week/3-5 hours)
Students use what they have learned in the Functions module to solve new challenges.

Objectives / Topics
Covered

e Solving large and more complex problems using functions

Assignments / Labs

e 3 challenges using functions to tie everything learned in the Functions
module together

O

Example Exercise: Balloons

You should use lines, circles, and random colors to draw a bunch of
balloons. All the balloon strings should start two-thirds down the
canvas. Each string line should travel upward to a random point and
have a circle placed on top of the endpoint. Each balloon should be
a random color and have a radius between "MIN_RADIUS" and
"MAX_RADIUS".

Unit 9: Animation and Games (3 weeks/10-15 hours)
Students learn how to make objects move around the screen and let users interact using the mouse!

Objectives / Topics e Timers
Covered e Randomizing Games
e Mouse Events
e Keyboard Events
Assignments / Labs ® 19 animations programming exercises in total

e Throughout the lessons in this module, you will be developing a simple game
that incorporates basic animation techniques and input events.
e Using timers to add randomizations to graphical programs

O

Example Exercise: Paint Splatter

Write a program that splatters paint on the screen every DELAY
milliseconds.

To splatter paint, pick a random color and draw
CIRCLES_PER_SPLATTER circles of that color at random places on
the screen. The radius of each circle should be a random value
between MIN_RADIUS and MAX_RADIUS.

Remember to use helper functions.

e Using mouse events for interactive programs

o

Example Exercise: Target

Draw a target on the screen that moves to aim at where your mouse
is located.

A target consists of a horizontal line that goes from O to the window
width and a vertical line that goes from 0 to the window height. The
lines should cross paths where the mouse is.

If you're feeling adventurous, you can extend this to draw a small
red circle whenever you click.

If you're feeling really adventurous, you can have a bouncing ball
on the screen and see if you can remove it when it gets clicked. You

can use remove(obj) to remove something from the screen and
getElementAt(x, y) to get an object at the given position. It will return
the object or will return null if there is no object there.

e Using keyboard events for interactive programs

o Example Exercise: Basic Snake

Write a basic version of the snake game.
The way our game works is by first creating a green square at the
center of the screen. The snake should be moving to the right. If
you hit an arrow key, you should change the snake’s direction.

Unit 10: Animations Challenges (1 week/2-3 hours)
Students apply all the foundational concepts from the Animations module to solve new challenges.

Objectives / Topics
Covered

e Solving additional problems using animation

Assignments / Labs

e 2 challenges using animation to tie everything learned in the Animation &
Games module together
o Example Exercise: Blinking Rectangles
You should divide the canvas into an imaginary grid with
"NUM_RECTANGLES_ACROSS rectangles across, and
"NUM_RECTANGLES_DOWN' rectangles down. Each time the user
moves the mouse, a rectangle aligned with this grid should be
drawn so that the mouse's location is within the rectangle. The
rectangle should change color each time the mouse passes over it.

Unit 11: Project: Breakout (2 weeks/10 hours)
Students learn how to make their own Breakout game from scratch using JavaScript.

Objectives / Topics
Covered

e Basic graphics
e Mouse events
e Collision detection

Assignments / Labs

e Guided exercises to build a Breakout Game

e Breakout is made up of bricks at the top of the screen, a paddle that you
control at the bottom of the screen, and a ball that bounces around. Your
goal is to direct the paddle with your mouse to bounce the ball until all of
the bricks have been hit and disappear.

Module 12: Project: Snake (2 weeks/ 10 hours)
Students make their own interactive snake game through a series of guided exercises.

Objectives / Topics
Covered

e Basic Graphics
e Key Events
e Collision Detection

Assignments / Labs

e Create your very own game of Snake where you control the ever elongating
snake with the arrow keys to eat as much food and avoid crashing into your
own body.

Module 13: Data Structures: Arrays (3 weeks/10-15 hours)
Students learn about arrays, how to iterate through them, and how to take advantage of their default methods.

Objectives / Topics e Array creation and basic operations
Covered e lterating through arrays
e Array methods
Assignments / Labs e 17 exercises in total
e Basic array operations
o Example Exercise: List of Places to Travel
Create an array of the top 5 places you would like to travel called
travellist. Print out the item at index 2.
e [terating through arrays
o Example Exercise: Draw a Barcode
In this program, you will draw a barcode on the screen given an
array that represents the data in the barcode.
e Array methods

o Example Exercise: Mutual Friends
In this program, you are going to create function that will find the
mutual friends between two array lists of friends.

Module 14: Data Structures: Objects (3 weeks/10-15 hours)
Students learn about objects, how to create object properties and methods, iterate through them, and build

constructors.
Objectives / Topics e Basic Objects and Object Properties
Covered e Object Methods
e |terating through an Object
e Object Constructors
Assignments / Labs e 17 exercises in total
e Basic Objects and properties
o Example Exercise: Shopping Cart
In this activity, you are going to create a digital shopping cart
program that is able to add item objects, print the list of items, and
calculate the total cost.
e Object methods
o Example Exercise: Bank Account
In this exercise, you need to define a function “createAccount()” that
creates a new bank account object and returns it.
e Object iteration
o Example Exercise: Starry Night
In this program, you have been given an "artwork™ object with
properties and a method. You need to complete the two functions
“printAllKeys()” and “printProperties()” so that the former prints every
key in the parameter object and the latter prints only the key-value
pairs of the properties (i.e. no methods).
e Object Constructors

o Example Exercise: Hobby Constructors
Choose a hobby, activity, or topic that you are interested in and
make an object constructor related to your choice. Then create at
least two instances of the object and demonstrate the functionality
of their properties and methods.

Module 15: Project: Tic Tac Toe (2 weeks/5-10 hours)
Students create their own game of Tic-Tac-Toe by applying what they have learned about data structures.

Objectives / Topics e Using data structures to solve a problem
Covered e Combining data structures and graphics
Assignments / Labs e Guided exercises to build a game of Tic Tac Toe

Module 16: Project: Helicopter (2 weeks/5-10 hours)
Students demonstrate their programming prowess as they develop the classic Helicopter game one step at a

time.

Objectives / Topics e Basic Graphics

Covered e Collision detection
e Scrolling background
e Generating random obstacles

Assignments / Labs e Guided exercises to explain the basic elements of game design and build

a Helicopter Game.

e Helicopter Game is played by controlling a helicopter with the mouse to

navigate through a changing terrain with flying obstacles.

Module 17: Final Project: Your Own Game (4 weeks/20 hours)
Students apply the skills they've learned throughout the course to create an original gamel!

Objectives / Topics e Basic Graphics
Covered e Collision detection
e Scrolling background
e Generating random obstacles
Assignments / Labs e Use everything you’ve learned to plan and build your own game!

